懂視移動端 視頻1 視頻21 視頻41 視頻61 視頻文章1 視頻文章21 視頻文章41 視頻文章61 推薦1 推薦3 推薦5 推薦7 推薦9 推薦11 推薦13 推薦15 推薦17 推薦19 推薦21 推薦23 推薦25 推薦27 推薦29 推薦31 推薦33 推薦35 推薦37 推薦39 推薦41 推薦43 推薦45 推薦47 推薦49 關(guān)鍵詞1 關(guān)鍵詞101 關(guān)鍵詞201 關(guān)鍵詞301 關(guān)鍵詞401 關(guān)鍵詞501 關(guān)鍵詞601 關(guān)鍵詞701 關(guān)鍵詞801 關(guān)鍵詞901 關(guān)鍵詞1001 關(guān)鍵詞1101 關(guān)鍵詞1201 關(guān)鍵詞1301 關(guān)鍵詞1401 關(guān)鍵詞1501 關(guān)鍵詞1601 關(guān)鍵詞1701 關(guān)鍵詞1801 關(guān)鍵詞1901 視頻擴(kuò)展1 視頻擴(kuò)展6 視頻擴(kuò)展11 視頻擴(kuò)展16 文章1 文章201 文章401 文章601 文章801 文章1001 資訊1 資訊501 資訊1001 資訊1501 標(biāo)簽1 標(biāo)簽501 標(biāo)簽1001 關(guān)鍵詞1 關(guān)鍵詞501 關(guān)鍵詞1001 關(guān)鍵詞1501
問答文章1 問答文章501 問答文章1001 問答文章1501 問答文章2001 問答文章2501 問答文章3001 問答文章3501 問答文章4001 問答文章4501 問答文章5001 問答文章5501 問答文章6001 問答文章6501 問答文章7001 問答文章7501 問答文章8001 問答文章8501 問答文章9001 問答文章9501
當(dāng)前位置: 首頁 - 題庫 - 正文

怎么求直線方程

來源:懂視網(wǎng) 責(zé)編:小OO 時間:2020-03-07 01:37:21
導(dǎo)讀怎么求直線方程,例如:兩點(diǎn)是(-2,1,3)、(0,-1,2)根據(jù)空間直線的兩點(diǎn)式:(x-x1)/(x2-x1)=(y-y1)/(y2-y1)=(z-z1)/(z2-z1),可得所求直線方程為:(x+2)/2=(y-1)/(-2)=(z-3)/(-1),即:(x+2)/2=(1-y)/2=3-z??臻g直線的方向用一個與該直本文我們將從以下幾個部分來詳細(xì)介紹如何求直線方程:已

例如:兩點(diǎn)是(-2,1,3)、(0,-1,2) 根據(jù)空間直線的兩點(diǎn)式:(x-x1)/(x2-x1) = (y-y1)/(y2-y1) = (z-z1)/(z2-z1) , 可得所求直線方程為:(x+2)/2 = (y-1)/(-2) = (z-3)/(-1) , 即:(x+2)/2 = (1-y)/2 = 3-z 。 空間直線的方向用一個與該直

本文我們將從以下幾個部分來詳細(xì)介紹如何求直線方程:已知一個點(diǎn)和斜率、已知兩點(diǎn)坐標(biāo)、已知一點(diǎn)坐標(biāo)和平行直線、已知一點(diǎn)和垂直線

要求直線的方程,你需要做兩件事:一是知道直線上的一點(diǎn),而是直線的斜率。但是如何求線上一點(diǎn)以及斜率呢,求得后還需要怎么做才能求出直線方程呢?這些都視情況而定。出于簡單,本文以斜截式 y = mx + b為例,暫不討論點(diǎn)斜式 (y - y1) = m(x - x1).第1步:了解基本概念。

已知兩點(diǎn)坐標(biāo)求直線方程的方法: 設(shè)這兩點(diǎn)坐標(biāo)分別為(x1,y1)(x2,y2)。 1、斜截式 求斜率:k=(y2-y1)/(x2-x1) 直線方程 y-y1=k(x-x1) 再把k代入y-y1=k(x-x1)即可得到直線方程。 2、兩點(diǎn)式 因?yàn)檫^(x1,y1),(x2,y2) 所以直線方程為:(x-

在求直線方程之前,你需要了解一些基本概念,這些概念是:

兩點(diǎn)式求直線方程公式推導(dǎo)如下: 首先,通過兩不同點(diǎn)的直線有且只有一條。因此設(shè)兩個不同的點(diǎn) 決定唯一的一條直線 ,此時我們可以取該直線的方向向量: 從而直線 的方程可以表示為: 此方程稱為直線的兩點(diǎn)式方程。 以上即為該公式的由來。 擴(kuò)展

一個點(diǎn)由一對數(shù)字表示,比如 (-7, -8) 或者(-2,-6)。

直線方程的一般式:Ax + By + C = 0 (A≠0 && B≠0)【適用于所有直線】。 斜率是指一條直線與平面直角坐標(biāo)系橫軸正半軸方向的夾角的正切值,即該直線相對于該坐標(biāo)系的斜率, 一般式公式:k = -A/B。 橫截距是指一條直線與橫軸相交的點(diǎn)(a,0)與原

第一個數(shù)字代表“x軸坐標(biāo)”,描述了一點(diǎn)在水平方向的位置(在原點(diǎn)左側(cè)或右側(cè),以及到原點(diǎn)的距離)。

設(shè)已知的斜率是k,則直線方程為y=kx+b,另外,再帶入直線上的一個點(diǎn),即可求出b的值。 從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標(biāo)系中的一個二元一次方程所表示的圖形。求兩條直線的交點(diǎn),只需把這兩個二元一次方程聯(lián)立求解,當(dāng)

第二個數(shù)字代表“y軸坐標(biāo)”,描述了一點(diǎn)在書脂肪的位置(在原點(diǎn)上方或下方,以及到原點(diǎn)的距離)。

已知兩點(diǎn)求直線方程最快方法是: 利用兩點(diǎn)式的直線方程 (x-x1)/(x2-x1)=(y-y1)/y2-y1) 其中(x1,y1)、(x2,y2)為已知的兩點(diǎn)的坐標(biāo)。

兩點(diǎn)之間的斜率,定義為“傾斜的程度”,即從一點(diǎn)移動到另一點(diǎn),豎直方向以及水平方向上移動的距離。

斜截式:y=kx+b 斜率是k,定點(diǎn)是(0,b)兩點(diǎn)式:y-y1=(y2-y1)/(x2-x1)(x-x1) 斜率:k=(y2-y1)/(x2-x1),定點(diǎn)(x1,y1),(x2,y2) 一般式:ax+by+c=0 定點(diǎn)(0,-c/b).斜率:k=-a/b 表示一條直線(或曲線的切線)關(guān)于(橫)坐標(biāo)軸傾斜程度的量。它通常用直線

如果兩條直線不相交,那么兩直線平行。

用直線方程的兩點(diǎn)式直接寫出。比如一個點(diǎn)的坐標(biāo)(a,b),另一個的的坐標(biāo)(c,d)。則通過這兩個點(diǎn)的直線方程為:(y-d)/(b-d)-(x-c)/(a-c)=0 表達(dá)式 1:一般式:Ax+By+C=0(A、B不同時為0)【適用于所有直線】 , A1/A2=B1/B2≠C1/C2←→兩直線

如果兩直線相交成90度角,那么兩直線垂直。

注意,過兩點(diǎn),上述為平面兩點(diǎn),我的是空間兩點(diǎn) 設(shè)過A(m,n,p),B(a,b,c)則直線方程為(x-m)/±(m-a)=(y-n)/±(n-b)=(z-p)/±(p-c)

第2步:辨認(rèn)出問題的類型。

直線方程的公式有以下幾種: 斜截式:y=kx+b 截距式:x/a+y/b=1 兩點(diǎn)式:(x-x1)/(x2-x1)=(y-y1)/(y2-y1) 一般式:ax+by+c=0 只要知道兩點(diǎn)坐標(biāo),代入任何一種公式,都可以求出直線的方程。 由兩點(diǎn)這樣求直線方程 兩個點(diǎn)坐標(biāo)是:(x1,y1)(x2,y2)

給出一點(diǎn)坐標(biāo)和斜率。

直線方程的公式有以下幾種: 斜截式:y=kx+b 截距式:x/a+y/b=1 兩點(diǎn)式:(x-x1)/(x2-x1)=(y-y1)/(y2-y1) 一般式:ax+by+c=0 只要知道兩點(diǎn)坐標(biāo),代入任何一種公式,都可以求出直線的方程。 由兩點(diǎn)這樣求直線方程 兩個點(diǎn)坐標(biāo)是:(x1

給出兩點(diǎn)坐標(biāo),斜率未知。

可以按照以下兩種方式: 1、在兩直線上分別找到三個不同點(diǎn)(一條上找兩個,另一條上找一個),用三點(diǎn)式方程公式求出方程。 2、若直線方程以《點(diǎn)向式》(即《對稱式》)給出,則所給條件已有《兩點(diǎn)+一向》,可以代入平面的《一般型》方程中,得出

一點(diǎn)坐標(biāo)以及平行直線。

直線一般方程可理解為兩個平面方程的交線,可以分別寫出兩平面的法向量n1、n2,根據(jù)法向量的定義,n1和n2垂直于本平面的所有直線。 待求直線為兩平面交線,所以必然垂直于n1和n2;根據(jù)向量叉乘的幾何意義,直線的方向向量L必然平行于n1×n2,可直

一點(diǎn)坐標(biāo)以及垂直線。

直線的兩點(diǎn)式方程推導(dǎo)過程: (1)設(shè)直線l上的兩點(diǎn)P1、P2的坐標(biāo)分別為(x1,y1)、(x2,y2),且(x1≠x2) 所以直線l的斜率K=(y2-y1)/(x2-x1) (2)在直線l上任意取一點(diǎn)P(x,y) 將直線l的斜率K,P點(diǎn)的坐標(biāo)代入直線的點(diǎn)斜式方程y-y0=k(x-x0)中得

第3步:使用下面的四種方法之一解決問題。

k=tanα=(y2-y1)/(x2-x1)或(y1-y2)/(x1-x2)。 斜率,亦稱“角系數(shù)”,表示一條直線相對于橫軸的傾斜程度。一條直線與某平面直角坐標(biāo)系橫軸正半軸方向的夾角的正切值即該直線相對于該坐標(biāo)系的斜率。 如果直線與x軸垂直,直角的正切值無窮大

根據(jù)所給信息的不同,求解方法也不一樣。

k=tanα=(y2-y1)/(x2-x1)或(y1-y2)/(x1-x2)。傾斜角為反正切函數(shù)值arctank。 解析幾何中,要通過點(diǎn)的坐標(biāo)和直線方程來研究直線通過坐標(biāo)計算求得,使方程形式上較為簡單。如果只用傾斜角一個概念,那么它在實(shí)際上相當(dāng)于反正切函數(shù)值arctan

第一部分:已知一個點(diǎn)和斜率

1)如果已知直線的方向向量(與直線平行的向量)v=(v1,v2) ,又已知直線過定點(diǎn)M(x0,y0) , 那么直線的方程為 (x-x0)/v1=(y-y0)/v2 。 2)如果已知直線的法向量(與直線垂直的向量)n=(A,B) ,又已知直線過定點(diǎn)M(x0,y0), 那么直線的方程為 A

第1步:計算方程的截距。

設(shè)直線為ax+by+c=0,直線上一點(diǎn)為P(u, v) 關(guān)于點(diǎn)(p, q)對稱, P'坐標(biāo)為(x, y) 則有x=(p+u)/2, y=(q+v)/2, 得u=2x-p, v=2y-q 代入直線方程得:a(2x-p)+b(2y-q)+c=0 即ax+by+(c-ap-bq)/2=0 這就是所求的對稱直線的方程。 擴(kuò)展資料: 表達(dá)形式 表達(dá)

截距(表達(dá)式中的b

直線方程共有五種形式: 一般式:Ax+By+C=0(AB≠0) 斜截式:y=kx+b(k是斜率b是x軸截距) 點(diǎn)斜式:y-y1=k(x-x1) (直線過定點(diǎn)(x1,y1)) 兩點(diǎn)式:(y-y1)/(x-x1)=(y-y2)/(x-x2) (直線過定點(diǎn)(x1,y1),(x2,y2)) 截距式:x/a+y/b=1 (a是x軸截距,b

)是直線和y軸交點(diǎn)的縱坐標(biāo)。你可以通過整理表達(dá)式來求得直線的截距。新的表達(dá)式的形式是:b = y - mx.

例如:兩點(diǎn)是(-2,1,3)、(0,-1,2) 根據(jù)空間直線的兩點(diǎn)式:(x-x1)/(x2-x1) = (y-y1)/(y2-y1) = (z-z1)/(z2-z1) , 可得所求直線方程為:(x+2)/2 = (y-1)/(-2) = (z-3)/(-1) , 即:(x+2)/2 = (1-y)/2 = 3-z 。 空間直線的方向用一個與該直

將斜率和坐標(biāo)代入上式。

如果直線經(jīng)過P(m,n) 當(dāng)直線的斜率存在的時候,也就是說直線不垂直與X軸的時候,可以設(shè)y-n=k(x-m) , 其中k為直線的斜率 當(dāng)直線垂直與X軸的時候 ,可以設(shè)x=m 擴(kuò)展資料: 從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標(biāo)系中的一個二元一

用斜率(m

)乘以點(diǎn)的橫坐標(biāo)。

直線的兩點(diǎn)式方程推導(dǎo)過程: (1)設(shè)直線l上的兩點(diǎn)P1、P2的坐標(biāo)分別為(x1,y1)、(x2,y2),且(x1≠x2) 所以直線l的斜率K=(y2-y1)/(x2-x1) (2)在直線l上任意取一點(diǎn)P(x,y) 將直線l的斜率K,P點(diǎn)的坐標(biāo)代入直線的點(diǎn)斜式方程y-y0=k(x-x0)中得

用點(diǎn)的縱坐標(biāo)減去上式結(jié)果。

∵圓C:x²+y²=2 ∴圓C為中心在原點(diǎn)(0,0),半徑為√2的圓 ∴OA=OB=√2 ∵△ABO的面積=1 即:S=1/2O×OB×sin∠AOB = 1/2×√2×√2×sin∠AOB=1 ∴sin∠AOB=1 ∴∠AOB=90° ∴做OD⊥AB于D,則OD=1 ∵直線過點(diǎn) P(1,2) ∴當(dāng)直線為x=1時,符合OD=1的條

最后的結(jié)果就是 b

k=tanα=(y2-y1)/(x2-x1)或(y1-y2)/(x1-x2)。 斜率,亦稱“角系數(shù)”,表示一條直線相對于橫軸的傾斜程度。一條直線與某平面直角坐標(biāo)系橫軸正半軸方向的夾角的正切值即該直線相對于該坐標(biāo)系的斜率。 如果直線與x軸垂直,直角的正切值無窮大

,即截距。

第2步:

補(bǔ)充表達(dá)式:y = ____ x + ____

斜截式方程,是指已知直線的斜率k和直線在y軸上的截距b,直線的方程可以表示為:y=kx+b,這個方程叫做直線的斜截式方程,簡稱斜截式。 1、斜截式方程,是直線方程的一種表示形式。 2、直線方程有五種表示形式,分別是: 點(diǎn)斜式:已知直線過點(diǎn)(x0,

。

第3步:

第一個空格處填斜率。

已知空間兩點(diǎn),求兩點(diǎn)直線方程可以使用:兩點(diǎn)式方程。 設(shè)已知兩點(diǎn)A、B的坐標(biāo)分別為(x1,y1)和(x2,y2),根據(jù)兩點(diǎn)式直線方程,表示過(x1,y1)和(x2,y2)的直線: 其中x1≠x2,y1≠y2。 因?yàn)榭臻g兩點(diǎn)已經(jīng)知道,所以直接把點(diǎn)A(x1,y1)和點(diǎn)B(x2,y2)代

第4步:

第二個空格處填截距。

應(yīng)該是 scanf("%lf %lf %lf %lf",&x1,&y1,&x2,&y2); double 類型對應(yīng)的輸出格式為%lf,格式不匹配可能會出錯。 不是"/"的問題,因?yàn)閥2-y1和x2-x1均為double類型,因此這里不是整除。

第5步:解例題, "已知直線過點(diǎn)(6, -5),且斜率為2/3,求直線方程?"

直線方程的公式有以下幾種: 斜截式:y=kx+b 截距式:x/a+y/b=1 兩點(diǎn)式:(x-x1)/(x2-x1)=(y-y1)/(y2-y1) 一般式:ax+by+c=0 只要知道兩點(diǎn)坐標(biāo),代入任何一種公式,都可以求出直線的方程。 希望可以幫到你^_^

列方程:b = y - mx.

代入數(shù)值計算

b = -5 - (2/3)6.

b = -5 - 4.

b = -9

代回方程檢查,結(jié)果確實(shí)是-9。

寫出方程:y = 2/3 x - 9

第二部分:已知兩點(diǎn)坐標(biāo)

第1步:計算兩點(diǎn)之間的斜率。

“斜率”又叫“坡度”,它描述了在水平方向移動一定距離,在切直方向上升或下降的數(shù)值。計算公式是: (Y2 - Y1) / (X2 - X1)

將兩點(diǎn)的坐標(biāo)代入公式。(兩個坐標(biāo)意味著有兩個“y”值,兩個"x"值)先填哪一個坐標(biāo)都可以,只要保證相應(yīng)的y值對應(yīng)相應(yīng)的x值即可。例如:

點(diǎn)(3, 8)

和點(diǎn)(7, 12)

。 (Y2 - Y1) / (X2 - X1) = 12 - 8 / 7 - 3 = 4/4, 或1。

點(diǎn)(5, 5)

和點(diǎn)(9, 2)

。(Y2 - Y1) / (X2 - X1) = 2 - 5 / 9 - 5 = -3/4。

第2步:代入一個點(diǎn)的坐標(biāo)之后,就把這個點(diǎn)劃掉,以免不小心再次代入該點(diǎn)。

第3步:計算直線的截距。

將方程y = mx + b變形為b = y - mx。還是同一個方程,只是字母交換了位置。

把斜率和坐標(biāo)代入。

用斜率(m

)乘以橫坐標(biāo)。

用縱坐標(biāo)減去上式結(jié)果。

求得b

,或截距。

第4步:

補(bǔ)充表達(dá)式:y = ____ x + ____

斜截式方程,是指已知直線的斜率k和直線在y軸上的截距b,直線的方程可以表示為:y=kx+b,這個方程叫做直線的斜截式方程,簡稱斜截式。 1、斜截式方程,是直線方程的一種表示形式。 2、直線方程有五種表示形式,分別是: 點(diǎn)斜式:已知直線過點(diǎn)(x0,

。

第5步:

第一個空格處填斜率。

已知空間兩點(diǎn),求兩點(diǎn)直線方程可以使用:兩點(diǎn)式方程。 設(shè)已知兩點(diǎn)A、B的坐標(biāo)分別為(x1,y1)和(x2,y2),根據(jù)兩點(diǎn)式直線方程,表示過(x1,y1)和(x2,y2)的直線: 其中x1≠x2,y1≠y2。 因?yàn)榭臻g兩點(diǎn)已經(jīng)知道,所以直接把點(diǎn)A(x1,y1)和點(diǎn)B(x2,y2)代

第6步:

第二個空格處填截距。

應(yīng)該是 scanf("%lf %lf %lf %lf",&x1,&y1,&x2,&y2); double 類型對應(yīng)的輸出格式為%lf,格式不匹配可能會出錯。 不是"/"的問題,因?yàn)閥2-y1和x2-x1均為double類型,因此這里不是整除。

第7步:解例題。

“已知兩點(diǎn)(6, -5)和(8, -12),求直線方程?”

求斜率。斜率= (Y2 - Y1) / (X2 - X1)

-12 - (-5) / 8 - 6 = -7 / 2

斜率是 -7/2

(從第一個點(diǎn)到第二個點(diǎn),我們需要先向下移動7,然后向右移動2,所以斜率是-7比2)。

列出方程 b = y - mx。

代入求解。

b = -12 - (-7/2)8.

b = -12 - (-28).

b = -12 + 28.

b = 16

注意

:由于橫坐標(biāo)代入的是8,因此縱坐標(biāo)必須代入-12。如果橫坐標(biāo)代入6,那縱坐標(biāo)必須代入-5。

帶回原式,檢查結(jié)果確實(shí)是16。

所求方程是:y = -7/2 x + 16

第三部分:已知一點(diǎn)坐標(biāo)和平行直線

第1步:

求已知平行直線的斜率。

y

之前沒有系數(shù)時,對應(yīng)的x

系數(shù)就是斜率。

比如,y = 3/4 x + 7,斜率是3/4。

比如,y = 3x - 2,斜率是3。

比如,y = 3x,斜率是3。

比如,y = 7,斜率是0 (因?yàn)榇藭rx的系數(shù)是0)。

比如,y = x - 7,斜率是1。

比如,-3x + 4y = 8,斜率是3/4。

為了求直線的斜率,需要化簡y

的系數(shù),比如:

4y = 3x + 8

方程兩邊同時除以"4":y = 3/4x + 2

第2步:使用上一步求出的斜率計算直線的截距,公式是b = y - mx。

將斜率和坐標(biāo)代入上式。

如果直線經(jīng)過P(m,n) 當(dāng)直線的斜率存在的時候,也就是說直線不垂直與X軸的時候,可以設(shè)y-n=k(x-m) , 其中k為直線的斜率 當(dāng)直線垂直與X軸的時候 ,可以設(shè)x=m 擴(kuò)展資料: 從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標(biāo)系中的一個二元一

用斜率(m

)乘以點(diǎn)的橫坐標(biāo)。

直線的兩點(diǎn)式方程推導(dǎo)過程: (1)設(shè)直線l上的兩點(diǎn)P1、P2的坐標(biāo)分別為(x1,y1)、(x2,y2),且(x1≠x2) 所以直線l的斜率K=(y2-y1)/(x2-x1) (2)在直線l上任意取一點(diǎn)P(x,y) 將直線l的斜率K,P點(diǎn)的坐標(biāo)代入直線的點(diǎn)斜式方程y-y0=k(x-x0)中得

用點(diǎn)的縱坐標(biāo)減去上式結(jié)果。

∵圓C:x²+y²=2 ∴圓C為中心在原點(diǎn)(0,0),半徑為√2的圓 ∴OA=OB=√2 ∵△ABO的面積=1 即:S=1/2O×OB×sin∠AOB = 1/2×√2×√2×sin∠AOB=1 ∴sin∠AOB=1 ∴∠AOB=90° ∴做OD⊥AB于D,則OD=1 ∵直線過點(diǎn) P(1,2) ∴當(dāng)直線為x=1時,符合OD=1的條

最后的結(jié)果就是 b

k=tanα=(y2-y1)/(x2-x1)或(y1-y2)/(x1-x2)。 斜率,亦稱“角系數(shù)”,表示一條直線相對于橫軸的傾斜程度。一條直線與某平面直角坐標(biāo)系橫軸正半軸方向的夾角的正切值即該直線相對于該坐標(biāo)系的斜率。 如果直線與x軸垂直,直角的正切值無窮大

,即截距。

第3步:

補(bǔ)充表達(dá)式:y = ____ x + ____

斜截式方程,是指已知直線的斜率k和直線在y軸上的截距b,直線的方程可以表示為:y=kx+b,這個方程叫做直線的斜截式方程,簡稱斜截式。 1、斜截式方程,是直線方程的一種表示形式。 2、直線方程有五種表示形式,分別是: 點(diǎn)斜式:已知直線過點(diǎn)(x0,

。

第4步:

第一個空格處填斜率。

已知空間兩點(diǎn),求兩點(diǎn)直線方程可以使用:兩點(diǎn)式方程。 設(shè)已知兩點(diǎn)A、B的坐標(biāo)分別為(x1,y1)和(x2,y2),根據(jù)兩點(diǎn)式直線方程,表示過(x1,y1)和(x2,y2)的直線: 其中x1≠x2,y1≠y2。 因?yàn)榭臻g兩點(diǎn)已經(jīng)知道,所以直接把點(diǎn)A(x1,y1)和點(diǎn)B(x2,y2)代

平行線有相同的斜率,所以第一步求出的斜率就是最終結(jié)果的斜率。

第5步:

第二個空格處填截距。

應(yīng)該是 scanf("%lf %lf %lf %lf",&x1,&y1,&x2,&y2); double 類型對應(yīng)的輸出格式為%lf,格式不匹配可能會出錯。 不是"/"的問題,因?yàn)閥2-y1和x2-x1均為double類型,因此這里不是整除。

第6步:解例題,"已知直線過點(diǎn)(4, 3),且平行于直線5x - 2y = 1,求直線方程?"

求斜率。所求直線的斜率和已知直線的斜率一樣,所以先求出已知直線的斜率:

-2y = -5x + 1

兩邊同時除以"-2" :y = 5/2x - 1/2

斜率是5/2

列出方程:b = y - mx。

代入計算。

b = 3 - (5/2)4。

b = 3 - (10)。

b = -7。

帶回原式,檢查結(jié)果確實(shí)是-7。

寫出方程:y = 5/2 x - 7

第四部分:已知一點(diǎn)和垂直線

第1步:

求出已知直線的斜率。

具體做法參考上一方法。

第2步:

求出斜率的負(fù)倒數(shù)。

交換分子和分母的位置,然后符號變號。因?yàn)閮蓷l互相垂直的直線的斜率互為負(fù)倒數(shù),所以你需要變換將所求的斜率。

2/3變成-3/2

-6/5 變成5/6

3 (即 3/1) 變成-1/3

-1/2 變成 2

第3步:

使用所求得的斜率計算截距。

公式是b = y - mx

將斜率和坐標(biāo)代入上式。

如果直線經(jīng)過P(m,n) 當(dāng)直線的斜率存在的時候,也就是說直線不垂直與X軸的時候,可以設(shè)y-n=k(x-m) , 其中k為直線的斜率 當(dāng)直線垂直與X軸的時候 ,可以設(shè)x=m 擴(kuò)展資料: 從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標(biāo)系中的一個二元一

用斜率(m

)乘以點(diǎn)的橫坐標(biāo)。

直線的兩點(diǎn)式方程推導(dǎo)過程: (1)設(shè)直線l上的兩點(diǎn)P1、P2的坐標(biāo)分別為(x1,y1)、(x2,y2),且(x1≠x2) 所以直線l的斜率K=(y2-y1)/(x2-x1) (2)在直線l上任意取一點(diǎn)P(x,y) 將直線l的斜率K,P點(diǎn)的坐標(biāo)代入直線的點(diǎn)斜式方程y-y0=k(x-x0)中得

用點(diǎn)的縱坐標(biāo)減去上式結(jié)果。

∵圓C:x²+y²=2 ∴圓C為中心在原點(diǎn)(0,0),半徑為√2的圓 ∴OA=OB=√2 ∵△ABO的面積=1 即:S=1/2O×OB×sin∠AOB = 1/2×√2×√2×sin∠AOB=1 ∴sin∠AOB=1 ∴∠AOB=90° ∴做OD⊥AB于D,則OD=1 ∵直線過點(diǎn) P(1,2) ∴當(dāng)直線為x=1時,符合OD=1的條

最后的結(jié)果就是 b

k=tanα=(y2-y1)/(x2-x1)或(y1-y2)/(x1-x2)。 斜率,亦稱“角系數(shù)”,表示一條直線相對于橫軸的傾斜程度。一條直線與某平面直角坐標(biāo)系橫軸正半軸方向的夾角的正切值即該直線相對于該坐標(biāo)系的斜率。 如果直線與x軸垂直,直角的正切值無窮大

,即截距。

第4步:

補(bǔ)充表達(dá)式:y = ____ x + ____

斜截式方程,是指已知直線的斜率k和直線在y軸上的截距b,直線的方程可以表示為:y=kx+b,這個方程叫做直線的斜截式方程,簡稱斜截式。 1、斜截式方程,是直線方程的一種表示形式。 2、直線方程有五種表示形式,分別是: 點(diǎn)斜式:已知直線過點(diǎn)(x0,

。

第5步:

第一個空格處填第二步求出的斜率。

第6步:

第二個空格處填截距。

應(yīng)該是 scanf("%lf %lf %lf %lf",&x1,&y1,&x2,&y2); double 類型對應(yīng)的輸出格式為%lf,格式不匹配可能會出錯。 不是"/"的問題,因?yàn)閥2-y1和x2-x1均為double類型,因此這里不是整除。

第7步:解例題。

"已知直線過點(diǎn)(8, -1),且垂直于直線4x + 2y = 9,求直線方程?"

求斜率。所求直線的斜率和已知直線的斜率互為負(fù)倒數(shù)。先計算已知直線的斜率:

2y = -4x + 9

方程兩邊同時除以"2": y = -4/2x + 9/2

斜率是-4/2

-2

-2的負(fù)倒數(shù)為1/2。

列出方程 b = y - mx。

代入計算

b = -1 - (1/2)8。

b = -1 - (4)。

b = -5。

帶回原式檢查,結(jié)果確實(shí)是 -5。

求得方程:y = 1/2 x - 5

擴(kuò)展閱讀,以下內(nèi)容您可能還感興趣。

由兩點(diǎn)怎么求直線方程

直線方程的公式有以下幾種:

斜截式:y=kx+b

截距式:x/a+y/b=1

兩點(diǎn)式:(x-x1)/(x2-x1)=(y-y1)/(y2-y1)

一般式:ax+by+c=0

只要知道兩點(diǎn)坐標(biāo),代入任何一種公式,都可以求出直線的方程。

由兩點(diǎn)這樣求直線方程

兩個點(diǎn)坐標(biāo)是:(x1,y1)(x2,y2)

直線方程是(x-x1)/(x2-x1)=(y-y1)/(y2-y1)

兩點(diǎn)間的直線方程怎么求?

直線方程的公式有以下幾種:

斜截式:y=kx+b

截距式:x/a+y/b=1

兩點(diǎn)式:(x-x1)/(x2-x1)=(y-y1)/(y2-y1)

一般式:ax+by+c=0

只要知道兩點(diǎn)坐標(biāo),代入任何一種公式,都可以求出直線的方程。

由兩點(diǎn)這樣求直線方程

兩個點(diǎn)坐標(biāo)是:(x1,y1)(x2,y2)

直線方程是(x-x1)/(x2-x1)=(y-y1)/(y2-y1)

已知兩平行直線方程,怎么求兩直線確定的平面方程

可以按照以下兩種方式:

1、在兩直線上分別找到三個不同點(diǎn)(一條上找兩個,另一條上找一個),用三點(diǎn)式方程公式求出方程。

2、若直線方程以《點(diǎn)向式》(即《對稱式》)給出,則所給條件已有《兩點(diǎn)+一向》,可以代入平面的《一般型》方程中,得出三個方程,解出平面方程來。

3、平面的方程的一般形式是Ax+By+Cz+D=0,它的法向量是(A,B,C),再求出已知的兩條直線方程的向量,然后分別和(A,B,C)垂直,相乘等于0 ,這里得到2個方程。

4、因?yàn)橹本€是屬于平面的,直線上的點(diǎn)也屬于平面,所以分別從這兩條直線找出兩個點(diǎn),代入平面方程,也得到2個方程,通過這4個方程就可以求出ABCD了。

拓展資料

1、“平面方程”是指空間中所有處于同一平面的點(diǎn)所對應(yīng)的方程,其一般式形如Ax+By+Cz+D=0。

2、在空間坐標(biāo)系內(nèi),平面的方程均可用三元一次方程Ax+By+Cz+D=0來表示。

高數(shù)怎么由直線一般方程求點(diǎn)向式方程

直線一般方程可理解為兩個平面方程的交線,可以分別寫出兩平面的法向量n1、n2,根據(jù)法向量的定義,n1和n2垂直于本平面的所有直線。

待求直線為兩平面交線,所以必然垂直于n1和n2;根據(jù)向量叉乘的幾何意義,直線的方向向量L必然平行于n1×n2,可直接令L=n1×n2。

再從方程中求出直線上的任意一點(diǎn)(例如可令z=0,直線方程變成二元一次方程組,解出x和y,就得到一個點(diǎn)坐標(biāo))

綜上就可列出直線的點(diǎn)向式方程。

擴(kuò)展資料:

點(diǎn)法向式就是由直線上一點(diǎn)的坐標(biāo)和與這條直線的法向向量確定的------((x0,y0)為直線上一點(diǎn),{u,v}為直線的法向向量)。高中數(shù)學(xué)中直線方程之一。

u(x-x0)+v(y-y0)=0且u,v不全為零的方程,稱為點(diǎn)向式方程。

可以表示所有直線。

若向量(u,v)是直線L 的一個方向向量 , [非零向量] 。

(  ,  )是直線上一點(diǎn)

則:uv不等于零 , 直線方程為 

u=0 ,v 不等于零 , 直線方程為 x=x0

v=0 ,u 不等于零 , 直線方程為 y=y0

設(shè)點(diǎn)M(x,y,z)是直線L上的任意一點(diǎn),且向量MoM與直線L的方向向量S平行,所以兩向量的對應(yīng)坐標(biāo)成比例,由于MoM=(x-xo,y-yo,z-zo),S=(m,n,p),從而有  =  =  .

如果在上式后面加上一個=t。那么原式可以轉(zhuǎn)換為  這便是直線的參數(shù)方程。

參考資料:百度百科-點(diǎn)向式方程

已知兩個點(diǎn),求直線方程?

直線的兩點(diǎn)式方程推導(dǎo)過程:

(1)設(shè)直線l上的兩點(diǎn)P1、P2的坐標(biāo)分別為(x1,y1)、(x2,y2),且(x1≠x2)

所以直線l的斜率K=(y2-y1)/(x2-x1)

(2)在直線l上任意取一點(diǎn)P(x,y)

將直線l的斜率K,P點(diǎn)的坐標(biāo)代入直線的點(diǎn)斜式方程y-y0=k(x-x0)中得

y-y1=[(y2-y1)/(x2-x1)]*(x-x1)

即(y-y1)/(y2-y1)=(x-x1)/(x2-x1)為直線l的兩點(diǎn)式方程。

聲明:本網(wǎng)頁內(nèi)容旨在傳播知識,若有侵權(quán)等問題請及時與本網(wǎng)聯(lián)系,我們將在第一時間刪除處理。TEL:177 7030 7066 E-MAIL:11247931@qq.com

標(biāo)簽: 襲擊
  • 熱門焦點(diǎn)

最新推薦

猜你喜歡

熱門推薦

怎么練就一筆好字 怎么計算正方形的面積 怎么防止土地污染 怎么做一名聰明的學(xué)生 怎么制造干冰 怎么尋求學(xué)習(xí)的動力 怎么提出建設(shè)性的批評意見 怎么用apa格式引用書籍 怎么快速背誦一篇文章 怎么計算頻率 怎么寫一封信 怎么變得能言善辯 怎么開始一次演講 怎么撰寫新聞稿 怎么用法語說“不客氣” 怎么計算一個棱柱的體積 怎么說德語 怎么寫大學(xué)論文 怎么在大學(xué)期間減肥 怎么成為一名積極分子 怎么減少水污染 怎么了解教育的重要性 怎么進(jìn)行文內(nèi)引用 怎么用身體語言溝通 怎么求3x3矩陣的逆矩陣 怎么成為一名優(yōu)秀的學(xué)生 怎么在夜空中尋找行星 怎么寫備忘錄 怎么說好英語 怎么計算一個圓錐體的體積 怎么用法語寫日期 怎么撰寫文章簡介 怎么變得聰明 怎么寫一個小故事 怎么計算閏年 怎么背單詞 怎么生動細(xì)膩地刻畫人物 怎么描述自己 怎么對整數(shù)進(jìn)行乘除運(yùn)算 怎么制定時間表
Top