b,b>c→a>c;a>b →a+c>b+c;a>b,c>0 → ac>bc等。" />
不等式公式是什么呢?不知道的小伙伴來看看小編今天的分享吧!
不等式公式是兩頭不對等的公式,是一種數(shù)學用語。
常用的不等式的基本性質:
a>b,b>c→a>c;
a>b →a+c>b+c;
a>b,c>0 → ac>bc;
a>b,c<0→ac<bc;
a>b>0,c>d>0 → ac>bd;
a>b,ab>0 → 1/a<1/b;
a>b>0 → a^n>b^n;
基本不等式:
√(ab)≤(a+b)/2
那么可以變?yōu)?a^2-2ab+b^2 ≥ 0
a^2+b^2 ≥ 2ab
ab≤a與b的平均數(shù)的平方
擴展:若有y=x1*x2*x3.....Xn 且x1+x2+x3+...+Xn=常數(shù)P,則Y的最大值為((x1+x2+x3+.....+Xn)/n)^n
絕對值不等式公式:
| |a|-|b| |≤|a-b|≤|a|+|b|
| |a|-|b| |≤|a+b|≤|a|+|b|
證明方法可利用向量,把a、b 看作向量,利用三角形兩邊之差小于第三邊,兩邊之和大于第三邊。
柯西不等式:
設a1,a2,…an,b1,b2…bn均是實數(shù),則有(a1b1+a2b2+…+anbn)^2≤(a1^2+a2^2+…an^2)*(b1^2+b2^2+…bn^2) 當且僅當ai=λbi(λ為常數(shù),i=1,2.3,…n)時取等號。
排序不等式:
設a1,a2,…an;b1,b2…bn均是實數(shù),且a1≥a2≥a3≥…≥an,b1≥b2≥b3≥…≥bn;則有a1b1+a2b2+…+anbn(順序和)≥a1b2+a2b1+a3b3+…+aibj+…+anbm(亂序和)≥a1bn+a2bn-1+a3bn-2+…+anb1(逆序和),僅當a1=a2=a3=…an,b1=b2=b3=…=bn時等號成立。
以上就是小編今天的分享了,希望可以幫助到大家。
聲明:本網(wǎng)頁內(nèi)容旨在傳播知識,若有侵權等問題請及時與本網(wǎng)聯(lián)系,我們將在第一時間刪除處理。TEL:177 7030 7066 E-MAIL:11247931@qq.com