最新文章專題視頻專題問答1問答10問答100問答1000問答2000關(guān)鍵字專題1關(guān)鍵字專題50關(guān)鍵字專題500關(guān)鍵字專題1500TAG最新視頻文章推薦1 推薦3 推薦5 推薦7 推薦9 推薦11 推薦13 推薦15 推薦17 推薦19 推薦21 推薦23 推薦25 推薦27 推薦29 推薦31 推薦33 推薦35 推薦37視頻文章20視頻文章30視頻文章40視頻文章50視頻文章60 視頻文章70視頻文章80視頻文章90視頻文章100視頻文章120視頻文章140 視頻2關(guān)鍵字專題關(guān)鍵字專題tag2tag3文章專題文章專題2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章專題3
問答文章1 問答文章501 問答文章1001 問答文章1501 問答文章2001 問答文章2501 問答文章3001 問答文章3501 問答文章4001 問答文章4501 問答文章5001 問答文章5501 問答文章6001 問答文章6501 問答文章7001 問答文章7501 問答文章8001 問答文章8501 問答文章9001 問答文章9501
當(dāng)前位置: 首頁 - 教育 - 知識百科 - 正文

高中數(shù)學(xué)導(dǎo)數(shù)8個公式

來源:懂視網(wǎng) 責(zé)編:李贏贏 時間:2021-11-29 18:30:43
文檔

高中數(shù)學(xué)導(dǎo)數(shù)8個公式

8個公式是:y=c(c為常數(shù))y'=0;y=x^ny'=nx^(n-1);y=a^xy'=a^xlnay=e^xy'=e^x;y=logaxy'=logae/x;y=sinxy'=cosx;y=cosxy'=-sinx ;y=tanxy'=1/cos^2x;y=cotxy'=-1/sin^2x。
推薦度:
導(dǎo)讀8個公式是:y=c(c為常數(shù))y'=0;y=x^ny'=nx^(n-1);y=a^xy'=a^xlnay=e^xy'=e^x;y=logaxy'=logae/x;y=sinxy'=cosx;y=cosxy'=-sinx ;y=tanxy'=1/cos^2x;y=cotxy'=-1/sin^2x。

高中數(shù)學(xué)導(dǎo)數(shù)8個公式是什么呢?不知道的小伙伴來看看小編今天的分享吧!

8個公式是:

y=c(c為常數(shù)) y'=0

y=x^n y'=nx^(n-1)

y=a^x y'=a^xlna y=e^x y'=e^x

y=logax y'=logae/x y=lnx y'=1/x 

y=sinx y'=cosx

y=cosx y'=-sinx

y=tanx y'=1/cos^2x

y=cotx y'=-1/sin^2x

運算法則:

加(減)法則:[f(x)+g(x)]'=f(x)'+g(x)'

乘法法則:[f(x)*g(x)]'=f(x)'*g(x)+g(x)'*f(x)

除法法則:[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2

一個函數(shù)在某一點的導(dǎo)數(shù)描述了這個函數(shù)在這一點附近的變化率。如果函數(shù)的自變量和取值都是實數(shù)的話,函數(shù)在某一點的導(dǎo)數(shù)就是該函數(shù)所代表的曲線在這一點上的切線斜率。

通過極限的概念對函數(shù)進行局部的線性逼近。例如在運動學(xué)中,物體的位移對于時間的導(dǎo)數(shù)就是物體的瞬時速度。

拓展資料:

什么是導(dǎo)數(shù)?

導(dǎo)數(shù)(Derivative)是微積分中的重要基礎(chǔ)概念。當(dāng)函數(shù)y=f(x)的自變量x在一點x0上產(chǎn)生一個增量x時,函數(shù)輸出值的增量y與自變量增量Δx的比值在Δx趨于0時的極限a如果存在,a即為在x0處的導(dǎo)數(shù),記作f'(x0)或df(x0)/dx。

導(dǎo)數(shù)是函數(shù)的局部性質(zhì)。一個函數(shù)在某一點的導(dǎo)數(shù)描述了這個函數(shù)在這一點附近的變化率。如果函數(shù)的自變量和取值都是實數(shù)的話,函數(shù)在某一點的導(dǎo)數(shù)就是該函數(shù)所代表的曲線在這一點上的切線斜率。導(dǎo)數(shù)的本質(zhì)是通過極限的概念對函數(shù)進行局部的線性逼近。例如在運動學(xué)中,物體的位移對于時間的導(dǎo)數(shù)就是物體的瞬時速度。不是所有的函數(shù)都有導(dǎo)數(shù),一個函數(shù)也不一定在所有的點上都有導(dǎo)數(shù)。若某函數(shù)在某一點導(dǎo)數(shù)存在,則稱其在這一點可導(dǎo),否則稱為不可導(dǎo)。然而,可導(dǎo)的函數(shù)一

定連續(xù);不連續(xù)的函數(shù)一定不可導(dǎo)。對于可導(dǎo)的函數(shù)f(x),x?f'(x)也是一個函數(shù),稱作f(x)的導(dǎo)函數(shù)(簡稱導(dǎo)數(shù))。尋找已知的函數(shù)在某點的導(dǎo)數(shù)或其導(dǎo)函數(shù)的過程稱為求導(dǎo)。實質(zhì)上,求導(dǎo)就是一個求極限的過程,導(dǎo)數(shù)的四則運算法則也來源于極限的四則運算法則。反之,已知導(dǎo)函數(shù)也可以倒過來求原來的函數(shù),即不定積分。微積分基本定理說明了求原函數(shù)與積分是等價的。求導(dǎo)和積分是一對互逆的操作,它們都是微積分學(xué)中最為基礎(chǔ)的概念。

以上就是小編今天的分享了,希望可以幫助到大家。

聲明:本網(wǎng)頁內(nèi)容旨在傳播知識,若有侵權(quán)等問題請及時與本網(wǎng)聯(lián)系,我們將在第一時間刪除處理。TEL:177 7030 7066 E-MAIL:11247931@qq.com

文檔

高中數(shù)學(xué)導(dǎo)數(shù)8個公式

8個公式是:y=c(c為常數(shù))y'=0;y=x^ny'=nx^(n-1);y=a^xy'=a^xlnay=e^xy'=e^x;y=logaxy'=logae/x;y=sinxy'=cosx;y=cosxy'=-sinx ;y=tanxy'=1/cos^2x;y=cotxy'=-1/sin^2x。
推薦度:
  • 熱門焦點

最新推薦

猜你喜歡

熱門推薦

專題
Top