2)分析頁面結(jié)構(gòu):每一個td都是,一個人員。
第一個small為排名
第二個a標簽是昵稱和用戶名,以及首頁的博客地址。用戶名通過地址截取獲取
第四個small標簽是,博客數(shù)量以及積分,通過字符串分離后可以逐個獲取到。
3)代碼:使用xpath獲取標簽及相關(guān)的內(nèi)容,獲取到首頁博客地址后,發(fā)送請求。
def parse(self, response):
for i in response.xpath("//table[@width='90%']//td"):
item = CnblogsItem()
item['top'] = i.xpath(
"./small[1]/text()").extract()[0].split('.')[-2].strip()
item['nickName'] = i.xpath("./a[1]//text()").extract()[0].strip()
item['userName'] = i.xpath(
"./a[1]/@href").extract()[0].split('/')[-2].strip()
totalAndScore = i.xpath(
"./small[2]//text()").extract()[0].lstrip('(').rstrip(')').split(',')
item['score'] = totalAndScore[2].strip()
# print(top)
# print(nickName)
# print(userName)
# print(total)
# print(score)
# return
yield scrapy.Request(i.xpath("./a[1]/@href").extract()[0], meta={'page': 1, 'item': item},
callback=self.parse_page)
1)頁面結(jié)構(gòu):通過分析,每篇博客的a標簽id中都包含“TitleUrl”,這樣就可以獲取到每篇博客的地址了。每頁面地址,加上default.html?page=2,page跟著變動就可以了。
2)代碼:置頂?shù)奈淖謺コ簟?/p>
def parse_page(self, response):
# print(response.meta['nickName'])
#//a[contains(@id,'TitleUrl')]
urlArr = response.url.split('default.aspx?')
if len(urlArr) > 1:
baseUrl = urlArr[-2]
else:
baseUrl = response.url
list = response.xpath("//a[contains(@id,'TitleUrl')]")
for i in list:
item = CnblogsItem()
item['top'] = int(response.meta['item']['top'])
item['nickName'] = response.meta['item']['nickName']
item['userName'] = response.meta['item']['userName']
item['score'] = int(response.meta['item']['score'])
item['pageLink'] = response.url
item['title'] = i.xpath(
"./text()").extract()[0].replace(u'[置頂]', '').replace('[Top]', '').strip()
item['articleLink'] = i.xpath("./@href").extract()[0]
yield scrapy.Request(i.xpath("./@href").extract()[0], meta={'item': item}, callback=self.parse_content)
if len(list) > 0:
response.meta['page'] += 1
yield scrapy.Request(baseUrl + 'default.aspx?page=' + str(response.meta['page']), meta={'page': response.meta['page'], 'item': response.meta['item']}, callback=self.parse_page)
3)對于每篇博客的內(nèi)容,這里沒有抓取。也很簡單,分析頁面。繼續(xù)發(fā)送請求,找到id為cnblogs_post_body的div就可以了。
def parse_content(self, response): content = response.xpath("//div[@id='cnblogs_post_body']").extract() item = response.meta['item']if len(content) == 0: item['content'] = u'該文章已加密'else: item['content'] = content[0]yield item
這一部分沒什么難的。記著安裝pymongo,pip install pymongo??偣灿?0+萬篇文章。
from cnblogs.items import CnblogsItemimport pymongoclass CnblogsPipeline(object):def __init__(self): client = pymongo.MongoClient(host='127.0.0.1', port=27017) dbName = client['cnblogs'] self.table = dbName['articles'] self.table.createdef process_item(self, item, spider):if isinstance(item, CnblogsItem): self.table.insert(dict(item))return item
scrapy中的代理,很簡單,自定義一個下載中間件,指定一下代理ip和端口就可以了。
def process_request(self, request, spider): request.meta['proxy'] = 'http://117.143.109.173:80'
Model類,存放的是對應(yīng)的字段。
class CnblogsItem(scrapy.Item):# define the fields for your item here like:# name = scrapy.Field()# 排名top = scrapy.Field() nickName = scrapy.Field() userName = scrapy.Field()# 積分score = scrapy.Field()# 所在頁碼地址pageLink = scrapy.Field()# 文章標題title = scrapy.Field()# 文章鏈接articleLink = scrapy.Field()
# 文章內(nèi)容
content = scrapy.Field()
對每個人的文章進行詞云分析,存儲為圖片。wordcloud的使用用,可參考園內(nèi)文章。
這里用了多線程,一個線程用來生成分詞好的txt文本,一個線程用來生成詞云圖片。生成詞云大概,1秒一個。
# coding=utf-8import sysimport jiebafrom wordcloud import WordCloudimport pymongoimport threadingfrom Queue import Queueimport datetimeimport os reload(sys) sys.setdefaultencoding('utf-8')class MyThread(threading.Thread):def __init__(self, func, args): threading.Thread.__init__(self) self.func = func self.args = argsdef run(self): apply(self.func, self.args)# 獲取內(nèi)容 線程def getTitle(queue, table):for j in range(1, 3001):# start = datetime.datetime.now()list = table.find({'top': j}, {'title': 1, 'top': 1, 'nickName': 1})if list.count() == 0:continuetxt = ''for i in list: txt += str(i['title']) + ' 'name = i['nickName'] top = i['top'] txt = ' '.join(jieba.cut(txt)) queue.put((txt, name, top), 1)# print((datetime.datetime.now() - start).seconds)def getImg(queue, word):for i in range(1, 3001):# start = datetime.datetime.now()get = queue.get(1) word.generate(get[0]) name = get[1].replace('<', '').replace('>', '').replace('/', '').replace('\', '').replace('|', '').replace(':', '').replace('"', '').replace('*', '').replace('?', '') word.to_file('wordcloudimgs/' + str(get[2]) + '-' + str(name).decode('utf-8') + '.jpg')print(str(get[1]).decode('utf-8') + ' 生成成功')# print((datetime.datetime.now() - start).seconds)def main(): client = pymongo.MongoClient(host='127.0.0.1', port=27017) dbName = client['cnblogs'] table = dbName['articles'] wc = WordCloud( font_path='msyh.ttc', background_color='#ccc', width=600, height=600)if not os.path.exists('wordcloudimgs'): os.mkdir('wordcloudimgs') threads = [] queue = Queue() titleThread = MyThread(getTitle, (queue, table)) imgThread = MyThread(getImg, (queue, wc)) threads.append(imgThread) threads.append(titleThread)for t in threads: t.start()for t in threads: t.join()if __name__ == "__main__": main()
附:mongodb內(nèi)存限制windows:
聲明:本網(wǎng)頁內(nèi)容旨在傳播知識,若有侵權(quán)等問題請及時與本網(wǎng)聯(lián)系,我們將在第一時間刪除處理。TEL:177 7030 7066 E-MAIL:11247931@qq.com